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Abstract. The field of cluster analysis is primarily concerned with the partitioning of data
points into different clusters so as to optimize a certain criterion. Rapid advances in tech-
nology have made it possible to address clustering problems via optimization theory. In this
paper, we present a global optimization algorithm to solve the fuzzy clustering problem,
where each data point is to be assigned to (possibly) several clusters, with a membership
grade assigned to each data point that reflects the likelihood of the data point belonging to
that cluster. The fuzzy clustering problem is formulated as a nonlinear program, for which
a tight linear programming relaxation is constructed via the Reformulation-Linearization
Technique (RLT) in concert with additional valid inequalities. This construct is embedded
within a specialized branch-and-bound (B&B) algorithm to solve the problem to global opti-
mality. Computational experience is reported using several standard data sets from the litera-
ture as well as using synthetically generated larger problem instances. The results validate the
robustness of the proposed algorithmic procedure and exhibit its dominance over the popu-
lar fuzzy c-means algorithmic technique and the commercial global optimizer BARON.

Key words: clustering problem, fuzzy clustering, fuzzy c-means algorithm, global optimiza-
tion, Reformulation-Linearization Technique

1. Introduction

Amongst the many areas in which optimization has proven to be an
invaluable tool, one notable application is that of cluster analysis. Broadly
defined, clustering is the process of partitioning a set of data points, i =
1, . . . , n, into subsets, j = 1, . . . , c, called clusters, such that some distance
measure is minimized (Sultan et al., 2002). Clustering problems of this type
arise in a host of applications related to cellular manufacturing, medicine,
archaeology, finance, and marketing (see Hartigan, 1975 for a detailed sur-
vey on applications of cluster analysis).

Specifically, there are two different types of clustering problems that have
been addressed in the literature: the hard clustering problem, wherein a
data point is to be assigned to exactly one cluster, and the fuzzy clus-
tering problem (FCP), which, in contrast, addresses the issue of assign-
ing a data point to one or more clusters along with a designation of a
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membership grade for each assignment that represents the likelihood of the
data point belonging to that cluster. (Here, the word fuzzy is derived from
fuzzy programming, and reflects the fact that the specific cluster to which
a data point belongs is only fuzzily known, and is not deterministic.) It
has been shown in literature that the clustering problem is NP-complete
(refer Mangiameli et al., 1996), and indeed, finding a global optimum to
this problem is a computationally onerous task.

A first attempt to solve the FCP is credited to Dunn (1973). Subse-
quently, Bezdek (1981) generalized Dunn’s algorithm and developed a more
comprehensive iterative procedure, popularly known as the fuzzy c-means
algorithm (FCMA). Given a set of heuristically prescribed initial cluster
centers, the FCMA first computes the membership grade for each data
point based on the relative distance measures, and then revises the clus-
ter centers using these resulting membership grades as fixed input quanti-
ties. This process is iteratively repeated until no further improvement in the
objective function is obtained. However, it has been observed that FCMA
often produces local minima and/or suboptimal clustering of the given
data. Consequently, several recent algorithms that have appeared in liter-
ature to solve the FCP are essentially modifications and improvements of
the FCMA (refer Kamel and Selim, 1994). Furthermore, although some of
these iterative procedures are guaranteed to converge to optimality under
certain assumptions, this convergence can be slow in practice. Other issues
such as the validity of the clusters determined by the FCMA (Roubens,
1982; Windham, 1982; Zahid et al., 1999), the geometric shape of the
clusters produced (Windham, 1983), and a demonstration that the FCMA
can at best produce only local optima (Ismail and Selim, 1986), are also
addressed in the literature. As an aside, note that the FCMA produces
cluster regions that are always spherical in shape. Gustafson and Kessel
(1979) found that replacing the traditional Euclidean distance objective
function criterion by another measure formulated from a symmetric, pos-
itive semidefinite matrix, yields elliptical clusters when solved via a modi-
fied version of the FCMA. Gath and Geva (1989) further generalized this
concept by taking into account the size and density of the clusters as well.

A comprehensive survey of fuzzy cluster analysis that is specifically
aimed at pattern recognition problems is presented by Baraldi and Blonda
(1999a,b), and the use of evolutionary algorithms for fuzzy clustering is dis-
cussed by Klawonn and Keller (1998). Also, Mirkin (1996) describes several
heuristic procedures such as the Ideal Type Fuzzy Clustering method, wherein
determining the membership grades for each data point is posed as a prob-
lem of computing a vector corresponding to the maximum singular value of
the given data matrix. However, despite this notable literature dedicated to
solving the FCP, there exist only a limited number of global optimization
procedures, such as the algorithms designed via fuzzy set theory as proposed
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by Ruspini (1973) and Guoyao (1998). This motivates us to consider alterna-
tive effective and robust global optimization approaches for solving the FCP.

As a precursor to the present work, we note that Sherali and Desai
(2005) have developed a global optimization approach to solve the hard
clustering problem based on the Reformulation-Linearization Technique
(RLT) (Sherali and Adams, 1990, 1994, 1999; Sherali and Tuncbilek, 1992;
Sherali and uncbilek, 1997). Here, the hard clustering problem is formu-
lated as a nonlinear, discrete optimization problem, which is subsequently
transformed into an equivalent 0–1 mixed-integer program having a tight
linear programming (LP) relaxation as prescribed by the RLT, and a spe-
cialized algorithm is designed to derive a global optimum.

In this research effort, we again apply the RLT to develop an effective global
optimization algorithm for solving the FCP. However, this approach is com-
pletely different from that for the hard clustering case because of the modified
structure of the present problem. The remainder of this paper is organized as
follows. The FCP is formulated as a nonlinear program in Section 2, and a tight
LP relaxation is derived as prescribed via the RLT methodology. Accordingly,
the reformulated problem is then embedded in a specialized branch-and-bound
(B&B) algorithm along with a branching rule that ensures global convergence,
in the spirit of Sherali and Tuncbilek (1992). Section 3 presents computational
results using certain standard test problems from the literature as well as using
larger synthetically generated data sets, and explores the performance of differ-
ent formulations. Finally, Section 4 concludes the paper with a summary and a
discussion on further avenues for research in this area.

2. Fuzzy clustering problem

The fuzzy clustering problem can be defined as follows. Given a set of n data
points, each having some s attributes, we are required to assign each of these
points to one or more of some c clusters (where c is given). In this process, we
are also required to specify for each assignment a membership grade that rep-
resents the likelihood of the data point belonging to that cluster. The objective
criterion is to minimize the total weighted squared Euclidean distances of the
data points from the centroids of the assigned clusters.

Mathematically, this FCP can be stated as follows:

FCP : Minimize
n∑

i=1

c∑

j=1

w2
ij

∥∥ai − zj

∥∥2
, (1a)

subject to
c∑

j=1

wij =1, ∀i =1, . . . , n, (1b)

wij �0, ∀(i, j), (1c)
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where ai ≡ (aik, k = 1, . . . , s)T is the location descriptor for the data point
i, zj ≡ (zjk, k = 1, . . . , s)T is the centroid of the to-be-determined cluster j,
wij is the membership grade associated with a data point i when assigned
to a cluster j, and the norm ‖ ‖ in (1a) represents the Euclidean distance
between the two points in its argument in the s-dimensional space under
consideration.

Note that, in general, the objective function for the FCP is sometimes
expressed as

∑n
i=1

∑c
j=1 wm

ij

∥∥ai − zj

∥∥2
, where m represents the degree of

fuzziness, with the notion that m is increased as the desired extent of fuzz-
iness in the problem increases. Given a data set, the choice of m, also
called the fuzzifier, is largely dependent on the separation between the
clusters. For example, if the data set contains clusters that are far apart,
then the data points can be crisply divided into various clusters, thereby
leading to the hard clustering problem, with m = 1, and the associated
membership grade for each data point turns out to be either 0 or 1. Con-
versely, for data sets containing clusters that are indistinguishable, a large
value of m ought to be prescribed. Indeed, as m→∞, it is observed that
the membership grade for each data point approaches 1/c (refer Höppner
et al. (1999) for a general discussion on this subject). In our research,
we have adopted the most commonly used value for m, namely m = 2.
Observe that, unlike as in the case of hard clustering, the w-variables can
now fractionate, thereby reflecting the fuzziness with which each data point
i is assigned to different clusters. Also, consistent with the optimization
approach adopted in this paper, we note that for solving problems hav-
ing a higher degree of fuzziness, some suitable pseudo-global optimiza-
tion approach coupled with factorable programming techniques might be
gainfully employed (see Sherali and Wang, 2001; Sherali and Ganesan,
2003).

Now, note that for a fixed w in Problem FCP, optimality in z requires
that

n∑

i=1

w2
ij (zjk −aik)=0, ∀(j, k). (2)

This yields,

zjk =

n∑
i=1

w2
ij aik

n∑
i=1

w2
ij

, ∀(j, k), i.e., zj =
∑

i

λiai, where λi =
w2

ij

n∑
i=1

w2
ij

, ∀i.

(3)
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Hence, each cluster centroid zj is a convex combination of the vectors
ai for which wij > 0 (since

∑n
i=1 λi =1, λi 0, ∀i in (3)). With this moti-

vation, let us define a (conveniently derived) superset approximation to
the convex hull of all the data points ai , i = 1, . . . , n, as given by the
inequalities

s∑

k=1

γqkξk �γq0, ∀q =1, . . . ,Q. (4)

Accordingly, we can impose the restrictions

s∑

k=1

γqkzjk �γq0, ∀q =1, . . . ,Q for each j. (5)

Remark 1. Let us denote the convex hull of the data points ai, i =
1, . . . , n, as � = conv {ai, i =1, . . . , n}. In the simplest case, � might be
taken as an enclosing hyper-rectangle as expounded below. Note that �

is efficiently computable in polynomial time for points in two-dimensions
(s = 2) using the method described in Manber (1989). (For example, Gra-
ham’s scan algorithm produces the convex hull in O(n log n) steps.) How-
ever, for higher dimensions, deriving � can prove to be an expensive task,
although, under some specific assumptions, it has been shown that this set
can be obtained using techniques such as neural networks (refer Leung
et al., 1997), cutting planes (Chazelle, 1991), and direct convex hull com-
putations for convex polyhedra (refer Klapper, 1987; Balas, 1988). In the
context of our problem, we can gainfully employ any such technique to
generate suitable valid inequalities for constructing a superset �̄ of �. For
simplicity, regardless of problem dimension, we will take �̄ to be a hyper-
rectangle that bounds the collection of points ai, i = 1, . . . , n, as defined
below.

�̄=
{
zj :αj

k � zjk �β
j

k , k =1, . . . , s
}

,

where, α
j

k = min {aik : i =1, . . . , n} ,∀k, and β
j

k = max {aik : i =1, . . . , n} ,∀k,
for each j . Additionally, we could incorporate within the definition of �̄

other valid inequalities that are valid for �. In order to maintain gener-
ality in presentation of these various viable algorithmic strategies, we will
henceforth assume that some such suitable set �̄ as designated by (4) has
already been obtained.
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Furthermore, given (2), the quartic objective function (1a) can be
reduced to a cubic polynomial as follows:

n∑

i=1

c∑

j=1

w2
ij

∥∥ai − zj

∥∥2 =
n∑

i=1

c∑

j=1

s∑

k=1

w2
ij (zjk −aik)

2

=
n∑

i=1

c∑

j=1

s∑

k=1

w2
ij (zjk −aik)zjk −

n∑

i=1

c∑

j=1

s∑

k=1

w2
ij (zjk −aik)aik

=
c∑

j=1

s∑

k=1

zjk

[
n∑

i=1

w2
ij (zjk −aik)

]
−

n∑

i=1

c∑

j=1

s∑

k=1

aikw
2
ij (zjk −aik)

=−
n∑

i=1

c∑

j=1

s∑

k=1

aikw
2
ij (zjk −aik). (6)

In addition, a critical factor that can seriously inhibit the solution of FCP
via a B&B approach is the symmetry in the problem structure. Note that
for any given solution, alternative equivalent solutions could be obtained
by simply reindexing each cluster composition, and a B&B algorithm could
get mired in sifting through such symmetric reflections. To alleviate the
related computational difficulties, we validly impart a somewhat distinctive
identity to each cluster set by indexing them in nonincreasing order of their
sizes. That is, we impose

n∑

i=1

wij �
n∑

i=1

wi,j+1, ∀j =1, . . . , c−1. (7)

Using (2), (5)–(7), we can re-write FCP as follows where the bounds on
wij can be initialized at lij =0, and uij =1, ∀(i, j), and will be revised sub-
sequently during the algorithmic process.

FCP1 : Maximize
n∑

i=1

c∑

j=1

s∑

k=1

aikw
2
ij (zjk −aik), (8a)

subject to
n∑

i=1

w2
ij (zjk −aik)=0, ∀(j, k), (8b)

s∑

k=1

γqkzjk �γq0, q =1, . . . ,Q, ∀j, (8c)

n∑

i=1

wij �
n∑

i=1

wi,j+1, ∀j =1, . . . , c−1, (8d)
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c∑

j=1

wij =1, ∀i =1, . . . , n, (8e)

lij �wij �uij , ∀(i, j). (8f )

We now apply the RLT to FCP1by generating some special additional valid
inequalities. Note that in order to curtail the size of the resulting prob-
lem obtained via this process, we will only generate RLT product con-
straints that contain nonlinear terms of the type that are already present
within FCP1. Denoting by (8c)qj , the particular constraint expression γq0 −∑s

k=1 γqkzjk �0 that appears in (8c), ∀(q, j), and denoting by [·]L the line-
arization of an expression [·] under the substitution:

Wij =w2
ij , xijk =wijzjk and yijk =w2

ij zjk, ∀(i, j, k), (9)

we will generate the following constraints, ∀q,∀(i, j):

[(8c)qj ∗ (wij − lij )
2]L�0, [(8c)qj ∗ (uij −wij )

2]L �0 and
[(8c)qj ∗ (uij −wij )∗ (wij − lij )]L �0. (10)

Incorporating (10) within FCP1 yields the following enhanced reformula-
tion FCP2, where we have now used the substitution (9) in (8a, b) as well,
and where we have re-written (8c) in (10) as (11c) below for the sake of
convenience in referencing. Proposition 1 below establishes the validity of
this model.

FCP2 : Maximize
n∑

i=1

c∑

j=1

s∑

k=1

aikyijk −
n∑

i=1

c∑

j=1

s∑

k=1

a2
ikWij , (11a)

subject to :
n∑

i=1

yijk −
n∑

i=1

aikWij =0, ∀(j, k), (11b)

s∑

k=1

γqkzjk �γq0, ∀q =1, . . . ,Q, ∀j, (11c)

[(11c)qj ∗ (wij − lij )
2]L �0, ∀q, i, j, (11d)

[(11c)qj ∗ (uij −wij )
2]L �0, ∀q, i, j (11e)

[(11c)qj ∗ (uij −wij )∗ (wij − lij )]L �0, ∀q, i, j,

(11f)
n∑

i=1

wij �
n∑

i=1

wi,j+1, ∀j =1, . . . , c−1, (11g)
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c∑

j=1

wij =1, ∀i =1, . . . , n, (11h)

lij �wij �uij , ∀(i, j). (11i)

Constraints (9). (12)

Note that the complicating constraints (12) are a part of FCP2; however,
upper bounds will be computed by solving Problem (11a–i), without con-
straint (12). We will refer to this LP relaxation as Problem FCP2. Condi-
tions under which these relaxed constraints (12) would be satisfied by an
optimum to FCP2, as well as the implication of other plausible RLT con-
straints that could have been added to this formulation while creating only
the product terms of the type (9), are addressed below.

PROPOSITION 1.
(a) The constraints [(wij − lij )

2]L �0, [(uij −wij )
2]L0, and [(uij −wij )(wij −

lij )]L �0, ∀(i,j) are implied by FCP2.
(b) The constraints [(11c)qj ∗ (wij − lij )]L � 0 and [(11c)qj ∗ (uij −wij )]L � 0,

∀(i,j) are implied by FCP2.
(c) For any feasible solution (w̄, z̄, W̄ , x̄, ȳ) to FCP2, if w̄ij = lij or w̄ij =uij ,

then we must have W̄ij = w̄2
ij , x̄ijk = w̄ij z̄jk, ∀k, and ȳijk = w̄2

ij z̄jk∀k, hold-
ing true, i.e., the related constraints in (9) or (12) are satisfied.

Proof. To begin with, let us define αk =min
{
ξk : constraints(4)

}
, and βk =

max
{
ξk : constraints(4)

}
, ∀k. Note that αk and βk exist for all k since (4)

defines a nonempty compact set. Moreover, we can compose surrogates of
(4) composed by using multipliers equal to the optimal dual solutions to
these problems to yield the restrictions ξk � αk, and ξk � βk, ∀k. Applying
this same surrogation process equivalently to (5) or (11c), we get

αk � zjk �βk, ∀(j, k). (13)

(a) To prove part (a), consider the RLT constraints [(wij − lij )
2]L � 0.

Pick some k for which αk < βk (this must exist; else FCP is trivial).
By surrogating (11d) using the same Lagrange multipliers with respect
to (11c)qj as those that produced (13), the algebra readily yields the
constraints

[(zjk −αk)(wij − lij )
2]L �0 and [(βk − zjk)(wij − lij )

2]L �0. (14)

Summing the constraints in (14) (in the linearized form) produces

[(βk −αk)(wij − lij )
2]L �0,
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which implies that [(wij − lij )
2]L � 0 because αk < βk. The other con-

straints in Part (a) are similarly implied by (11e) and (11f), respectively.
(b) If lij =uij , then the stated constraints are null upon fixing wij = lij =uij

in FCP2. Hence, suppose that lij <uij . The constraints of Part (b) can
then be obtained by summing the corresponding constraints in (11d, f)
and (11e, f), respectively, and are hence implied.

(c) Finally, consider Part (c), and assume that w̄ij = lij . (The case of w̄ij =
uij is similar.) First, let us show that W̄ij = w̄2

ij . By Part (a), since the
stated constraints are implied by FCP2, we have that when w̄ij = lij

[(wij − lij )
2]L = [wij (wij − lij )]L − lij (wij − lij )�0⇒ W̄ij � l2

ij

and similarly,

[(uij−wij )(wij−lij )]L =uij (wij−lij )− [wij (wij − lij )]L �0⇒Wij � l2
ij .

Hence, we have W̄ij = l2
ij = w̄2

ij .

Next, let us show that x̄ijk = w̄ij z̄jk, ∀ k. For any k, noting (13) and Part
(b), we have that the constraints of FCP2 imply the restrictions [(zjk −
αk)(wij − lij )]L �0 and [(βk −zjk)(wij − lij )]L �0. Under the condition w̄ij =
lij , these constraints respectively imply that x̄ijk � lij z̄jk and x̄ijk � lij z̄jk,
which yields x̄ijk = lij z̄jk = w̄ij z̄jk.

Finally, let us establish that ȳijk = w̄2
ij z̄jk, ∀ k. Again, for any k, noting

(11d) and (13), we have that the corresponding surrogates of the former
yield

[(zjk −αk)(wij − lij )
2]L �0 and [(βk − zjk)(wij − lij )

2]L �0, i.e.,
[zjk(wij − lij )

2]L −αk[(wij − lij )
2]L �0 and

[zjk(wij − lij )
2]L −βk[(wij − lij )

2]L �0. (15)

But when w̄ij = lij , we have [(wij − lij )
2]L =Wij + l2

ij −2lijwij =0 since W̄ij =
l2
ij from above. Hence, (15) asserts that when w̄ij = lij , we have [zjk(wij −
lij )

2]L = 0, i.e., ȳijk + z̄jkl
2
ij − 2lij x̄ijk = 0. Using x̄ijk = lij z̄jk from above, this

implies that ȳijk = l2
ij z̄jk = w̄2

ij z̄jk. This completes the proof.

We now design a B&B algorithm for solving Problem FCP2, based on
partitioning the hyperrectangle (11i) alone. For any node in this B&B tree,
we compute an upper bound by solving the LP relaxation FCP2 for the
corresponding subproblem (i.e., FCP2 with modified bounds in (11i), and
hence in (11d)–(11f)). If the resulting solution (w̄, z̄, W̄ , x̄, ȳ) satisfies (12),
it is optimal to this subproblem. Otherwise, a heuristic solution could
be computed by fixing w̄, solving for z̄ via (3), then fixing the resulting
z-variables and solving for the w variables in (1a)–(1c) (see Remark 2 below
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for the relevant formulae), and so on, alternating in this fashion until the
objective function value no longer improves. The node selection strategy
in this process picks a node that has the greatest upper bound for further
exploration. Finally, to select a branching variable, we compute the index

θij=max
{∣∣W̄ij−w̄2

ij

∣∣ ,
∣∣x̄ijk−w̄ij z̄jk

∣∣ for all k,
∣∣ȳijk−w̄2

ij z̄jk

∣∣ for all k
}
.

(16)

Note that by Proposition 1, if w̄ij = lij or w̄ij =uij , then we have θij =0. Also,
if (12) is satisfied, then θij = 0, ∀(i, j). Else, we select θpq ≡ arg max

(i,j)

{θij } >

0, which means that lpq < w̄pq <upq . The node subproblem is then split by
imposing the dichotomy that

lij �wij � w̄ij or w̄ij �wij �uij . (17)

Infinite convergence to a global optimum (in case finite termination does not
occur) follows from Sherali and Tuncbilek (1992), noting Proposition 1.

Remark 2. For a fixed z= z̄, Problem (1a)–(1c) can be solved for an opti-
mal value of w as follows.

PROPOSITION 2. Let zj = z̄j be fixed for all j in Problem FCP ((1a)–(1c)).
Then an optimal corresponding solution w̄ to FCP is obtained as follows:

For each i, if z̄r =ai for some r, then set w̄ir =1,

and w̄ij =0 for all j �= r (18a)

otherwise,

let w̄ij = π̄i∥∥ai − z̄j

∥∥2 , ∀ j, where π̄i = 1
∑c

j=1

(
1/

∥∥ai − z̄j

∥∥2
) . (18b)

Proof. For z = z̄ fixed, Problem FCP is a linearly constrained convex
program for which the KKT conditions are both necessary and suffi-
cient. Denoting πi and µij as the Lagrange multipliers associated with (1b)
and (1c), respectively, ∀ i, j , these conditions require that (where we have
denoted cij ≡∥∥ai − z̄j

∥∥2
, ∀ i, j , and equivalently written the objective func-

tion as: Minimize 1/2
∑n

i=1

∑c
j=1 cijw

2
ij ):

c∑

j=1

wij =1, ∀ i, w �0, (19a)

cijwij −πi −µij =0, µijwij =0, µij �0, ∀ (i, j). (19b)
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Consider any i ∈{1, . . . , n}. Let us first show that we must have µij =0, ∀j ,
in (19b). If any µij >0, then (19b) implies that wij =0, and so πi =−µij <0.
But (19a) requires that wir >0 for some r, and (19b) asserts that µir must
be zero for this (i, r), which means that we should have cirwir =πi . Since
cir �0, this contradicts that πi <0. Hence, µij =0, ∀j in (19b).

Consequently, if cir =0 (i.e., z̄r =ai) for any r, then by (19b), we will have
πi =0 and the KKT conditions (19a, b) are satisfied by selecting wij = w̄ij

for all j as specified in (18a). On the other hand, if we have cij >0, ∀j , we
have from (19b) that wij = πi/cij , ∀j , and using (19a), we obtain πi = π̄i

and wij = w̄ij , ∀j , as given by (18b). This completes the proof.

Remark 1. Note that the proof of Proposition 2 asserts that we could
impose the constraints

wij

s∑

k=1

(zjk −aik)
2 =πi, ∀(i, j), (20)

within the reformulation of FCP2. However, doing so would produce new
nonlinear terms other than those in (9) that would require additional sup-
porting RLT constraints involving the pairwise products of (11c), or the
pairwise products of the surrogated implied constraints (13), multiplied by
the corresponding bound factors (wij − lij ) and (uij −wij ), ∀(i, j). To avoid
this increase in size, we do not include (20) explicitly, and permit FCP2
itself to implicitly attain these conditions ultimately.

3. Computational Results

In this section, we provide computational results using some standard data
sets from the literature as well as randomly generated problems to compare
the proposed global optimization approach with the popularly implemented
FCMA heuristic as well as the commercial global optimizer BARON (see
Sahinidis, 1996). Throughout, we will use the following terminology:

Z0: Objective function value of FCP corresponding to the heuris-
tic solution found at node zero.

Z∗: Optimal objective function value of FCP, evaluated at the
optimal solution to FCP2 (≡−ν[FCP2]).

Z∗
FCMA: Best objective function value of FCP obtained via the FCMA

procedure of Bezdek (1981).
Z∗

FCP−B : Best objective function value of FCP obtained via BARON
(see Sahinidis, 1996).

Z∗
FCP1−B: Best objective function value of FCP produced by solving

FCP1 via BARON.
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CPU∗: CPU time required to determine a global optimum for FCP2
via the proposed B&B algorithm.

CPUFCMA: CPU time required for the FCMA heuristic procedure.
CPUFCP−B: CPU time required by BARON to solve Problem FCP.

CPUFCP1−B: CPU time required by BARON to solve Problem FCP1.
CPU0: CPU time required to determine a heuristic solution at node

zero via the solution to FCP2.

To test our proposed methodology, we first used the following standard
data sets given in Späth (1980):

1. Data Set 1. This is a set of Cartesian coordinates for 22 German towns,
which yields a clustering problem having 22 points in a two-dimensional
space.

2. Data Set 2. This is a set of Cartesian coordinates for 59 German towns,
which yields a clustering problem having 59 points in a two-dimensional
space.

3. Data Set 3. This pertains to 89 postal zones in Germany, where each
zone has three attributes, namely, surface area (measured in square kilo-
meters), population, and the density of the population. This yields a
clustering problem having 89 points in a three-dimensional space.

4. Data Set 4. This is also based on the 89 postal zones of Data Set 3, but
considers four attributes, namely, the number of self-employed people,
civil servants, clerks, and manual workers. This yields a clustering prob-
lem having 89 points in a four-dimensional space.

The proposed B&B algorithm for solving FCP2 was implemented in C++,
and the commercial solver CPLEX 8.1.0 was invoked for the purpose of
solving the LP relaxations at each node. Furthermore, for modeling our
problem, the constraints (11c) in FCP2 that represent a superset of the
convex hull of the data points were generated by simply constructing a
tightest hyperrectangle that encloses the data points. Also, for benchmark-
ing our results, we coded the FCMA procedure in C++, and executed
this method with a prescribed termination tolerance of ε = 10−3. Tables 1
and 2 present the relative performance of the proposed algorithm versus
the FCMA procedure, measured in terms of various statistics, for three and
five cluster centers, respectively.

Note that, on an average, the reformulated problem FCP2 required only
14.05% and 9.87% of the time taken by the FCMA, while producing opti-
mal solutions that further improve the FCMA solutions by 69.32% and
74.88%, for the respective cases of three and five cluster centers. Indeed,
from the results in Tables 1 and 2, it can be seen that the (heuristic) solu-
tion obtained at node zero itself was uniformly better than that prescribed
by the FCMA, yielding an average improvement of 26.77% and 38.93%,
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Table 1. Relative performance of the proposed optimization approach versus
the FCMA procedure for three cluster centers.

Data sets Parameters

Z0
Z∗

Z∗
FCMA

Z∗
Z∗

FCMA

Z0
CPU∗(s) CPU∗

CPUFCMA

CPU0

CPUFCMA

1 2.25 2.48 1.10 0.140 0.254 0.084
2 2.43 2.99 1.23 0.274 0.236 0.078
3 2.19 4.03 1.84 0.288 0.110 0.036
4 2.68 3.55 1.32 0.410 0.114 0.037

Averages 2.387 3.26 1.37 0.278 0.140 0.046

Table 2. Relative performance of the proposed optimization approach versus
the FCMA procedure for five cluster centers.

Data sets Parameters

Z0
Z∗

Z∗
FCMA

Z∗
Z∗

FCMA

Z0
CPU∗ (s)

CPU∗

CPUFCMA

CPU0

CPUFCMA

1 2.15 3.22 1.50 0.166 0.152 0.088
2 2.20 4.43 2.01 0.300 0.141 0.082
3 3.27 5.73 1.75 0.414 0.073 0.042
4 3.42 4.68 1.37 0.600 0.099 0.057

Averages 2.76 4.52 1.64 0.37 0.116 0.067

for three and five cluster centers, respectively. Furthermore, from the col-
umn of values CPU0/CPUFCMA in Tables 1 and 2, it can be observed that
this node zero heuristic solution process consumed only 4.6% and 6.7% of
the CPU time taken by the FCMA at an average, for three and five clus-
ter centers, respectively, while yet producing superior solutions. Moreover,
as evident from the results in this table, the global optimum further sig-
nificantly improved upon the heuristic solution produced at node zero, and
was derived within a reasonable computational effort.

Next, to further test the robustness of solving the reformulated problem
FCP2 via the proposed approach, a comparative study was conducted by
directly solving the nonlinear programs FCP and FCP1, using the commer-
cial software GAMS/BARON software (version 2.50) (see Sahinidis, 1996).
The corresponding results obtained are reported in Tables 3 and 4. Assim-
ilating the results obtained in Tables 1–4, note that the proposed approach
required only 49.20% and 54.57% of the CPU time consumed by BARON
for solving FCP, and 84.24% and 90.24% of the CPU time consumed by
BARON for solving FCP1, for the case of three and five cluster centers,
respectively. Moreover, examining the objective function values obtained at
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Table 3. Relative performance of solving problems FCP and FCP1 via BARON
versus the proposed approach, for three cluster centers

Data sets Averages

1 2 3 4

FCP
CPU∗

CPUFCP−B

1.166667 0.668293 0.355556 0.445652 0.492

Z∗
FCP−B

Z∗ 3.00 3.71 3.40 3.91 3.505

FCP1
CPU∗

CPUFCP1−B

0.5645 0.9163 0.9350 0.8541 0.8424

Z∗
FCP1−B

Z∗ 1.06 1.83 2.10 2.42 1.852

Table 4. Relative performance of solving problems FCP and FCP1 via
BARON versus the proposed approach, for five cluster centers

Data sets Averages

1 2 3 4

FCP
CPU∗

CPUFCP−B

0.922 0.5660 0.4224 0.5870 0.5457

Z∗
FCP−B

Z∗ 2.87 3.55 3.4 4.02 3.46

FCP1
CPU∗

CPUFCP1−B

0.6916 0.8219 0.9627 1.00 0.9024

Z∗
FCP1−B

Z∗ 1.108 1.62 2.55 2.87 2.037

termination while solving problems FCP and FCP1 using BARON, it is
evident that BARON consistently produced relatively inferior solutions that
respectively deviate in value from optimality (as detected by our method)
by factors of 3.505 and 1.852 when solving FCP and FCP1 for the case
of three cluster centers, and by factors of 3.46 and 2.037 when solving
FCP and FCP1, for the case of five cluster centers. The observed robust-
ness of our approach in comparison with BARON stems from the fact that
we solve linear, rather than general convex programming relaxations, which
yields more reliable bounds for fathoming purposes. Nonetheless, at least
in comparison with the FCMA, the solution values obtained by BARON
when solving Problem FCP1 dominated the FCMA solution values.

To reinforce the efficacy of our proposed approach, we also solved sev-
eral additional randomly generated problems of larger sizes, and compared
the results obtained with those produced by the FCMA procedure and
by BARON. The number of data points in these test instances was var-
ied from 250 to 1000 in steps of 250, and the dimension of the space was
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Table 5. Comparative results for the proposed approach versus FCMA and BARON for randomly
generated problem instances having three cluster centers

Data sets Parameters

Z0

Z∗

Z∗
FCMA

Z∗

Z∗
FCMA

Z0

Z∗
FCP1−B

Z∗ CPU∗(s)
CPU∗

CPUFCMA

CPU0

CPUFCMA

CPU∗

CPUFCP1−B

(250, 2) 1.23 3.33 2.71 1.21 29.52 4.17 0.55 1.380
(500, 2) 1.60 3.85 2.41 1.40 62.15 5.45 0.43 1.281
(750, 2) 1.82 4.14 2.27 1.51 125.29 5.31 0.84 1.240
(1000, 2) 2.27 4.76 2.10 1.73 150.77 4.01 0.73 1.234
(250, 4) 1.31 1.31 1.00 1.47 116.03 11.85 1.65 1.243
(500, 4) 2.14 2.09 0.98 1.76 205.57 11.22 1.53 1.225
(750, 4) 2.87 5.58 1.94 2.03 314.83 14.42 0.53 1.217
(1000, 4) 3.39 6.30 1.86 2.30 590.27 15.70 0.43 1.210
(250, 6) 1.66 3.92 2.36 1.43 320.38 6.30 0.48 1.215
(500, 6) 2.54 5.13 2.02 1.87 388.86 9.81 0.69 1.215
(750, 6) 4.07 7.23 1.78 2.64 404.66 12.96 0.67 1.214
(1000, 6) 4.92 8.40 1.71 3.06 423.79 10.55 0.55 1.209
(250, 8) 2.12 2.06 0.97 1.75 327.05 8.70 1.80 1.231
(500, 8) 3.37 5.58 1.66 2.03 787.89 18.14 0.51 1.199
(750, 8) 4.85 6.30 1.30 2.30 984.57 14.34 0.94 1.210
(1000, 8) 5.99 3.92 0.65 1.43 1188.13 13.92 0.52 1.217

Averages 2.887 5.13 1.78 1.87 401.24 11.38 0.80 1.214

varied from two to eight, in steps of two, thereby leading to a total of
4 × 4 = 16 test problems, with the smallest data set having 250 points in a
two-dimensional space, and the largest problem having 1000 points in an
eight-dimensional space. The number of clusters (c) for each case was taken
to be either three (Table 5) or five (Table 6).

From the results displayed in Tables 5 and 6, note that the FCMA
procedure requires a significantly lesser CPU time as compared with the
proposed exact approach, but the best solution produced by the FCMA
procedure is also substantially inferior. However, the node zero heuris-
tic solution produced by the proposed approach uniformly dominates the
FCMA solution with respect to both quality and effort in most of the
problem instances, with three exceptions out of the total of 32 problems,
all occurring for three centers (Data Sets (250, 4), (500, 4), and (250, 8)
in Table 5). On an average, to obtain a feasible solution to Problem FCP2
based on the node zero analysis alone, the CPU time required was 20%
lesser than for the FCMA procedure, yet the quality of the solution was
43.2% better in terms of the objective function value for the three cluster
center case. Moreover, note that although BARON comsumed about 21.4%
lesser effort as compared with the proposed algorithm, it tended to produce
suboptimal solutions having an 87% greater objective value for FCP. Thus,
for a moderate increase in computational effort, we can obtain significantly
improved global optimal solutions via the proposed methodology. A simi-
lar performance was observed for the case of five cluster centers. Note that
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Table 6. Comparative results for the proposed approach versus FCMA and BARON for randomly
generated problem instances having five cluster centers

Data sets Parameters

Z0

Z∗

Z∗
FCMA

Z∗

Z∗
FCMA

Z0

Z∗
FCP1

Z∗ CPU∗(s)
CPU∗

CPUFCMA

CPU0

CPUFCMA

CPU∗

CPUFCP1−B

(250, 2) 1.51 5.01 3.32 1.27 36.23 3.82 0.70 1.437
(500, 2) 1.97 5.79 2.94 1.47 72.06 4.53 0.54 1.260
(750, 2) 2.24 6.22 2.78 1.59 141.39 4.16 0.96 1.188
(1000, 2) 2.79 7.16 2.57 1.82 169.36 3.09 0.92 1.176
(250, 4) 1.61 1.97 1.22 1.55 131.22 9.72 1.09 1.193
(500, 4) 2.63 3.14 1.19 1.85 229.53 8.77 1.04 1.161
(750, 4) 3.53 8.39 2.38 2.13 349.50 11.14 0.67 1.147
(1000, 4) 4.17 9.47 2.27 2.42 651.94 11.90 0.54 1.134
(250, 6) 2.04 5.89 2.89 1.50 355.60 4.77 0.61 1.146
(500, 6) 3.13 7.71 2.46 1.97 430.79 7.45 0.87 1.152
(750, 6) 5.01 10.87 2.17 2.77 448.14 9.89 0.85 1.131
(1000, 6) 6.06 12.63 2.08 3.22 469.14 8.00 0.70 1.140
(250, 8) 2.61 3.10 1.19 1.84 362.92 6.63 1.28 1.146
(500, 8) 4.15 8.39 2.02 2.13 868.92 13.69 0.65 1.131
(750, 8) 5.97 9.47 1.59 2.42 1084.88 10.75 0.79 1.129
(1000, 8) 7.37 5.89 0.80 1.50 1308.39 10.41 0.66 1.127

Averages 3.55 7.71 2.17 1.97 444.38 8.66 0.804 1.141

other meta-heuristic procedures such as the genetic algorithm or simulated
annealing could also be combined with the node zero analysis to derive
enhanced quality feasible solutions via FCP2, either as a stand-alone pro-
cedure or within the framework of the proposed B&B algorithm. We rec-
ommend such investigations for future research.

4. Summary and Extensions for Further Research

In this research effort we have developed an algorithm for determining a
global optimum to the FCP, where the objective function seeks to min-
imize the total degree-two fuzzifier weighted squared Euclidean distance
from each data point to the centroids of the clusters to which it is assigned,
and requires an accompanying membership grade to be assigned to each
data point that reflects the possibility of a data point belonging to each
particular cluster. A series of enhanced reformulations of this problem
were presented, augmented by optimality-induced, symmetry-defeating, and
RLT-based inequalities, and a specialized B&B algorithm was designed for
solving the resulting model representation. Several computational exper-
iments were performed using standard data sets as well as synthetically
generated test cases to explore the efficacy of the proposed exact solu-
tion approach, as well as to study the effectiveness of the heuristic scheme
implemented at the root node. This performance was compared with the
popular FCMA procedure (see Bezdek, 1981) and the commercial global
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optimizer BARON (see Sahinidis, 1996). The results revealed the viability
and robustness of the proposed approach, and exhibited its superiority over
the FCMA procedure, even as a heuristic based on the node zero analysis.
The B&B algorithm also consistently dominated BARON in terms of pro-
ducing significantly improved global optimal solutions with a comparable
computational effort.

Although the proposed B&B algorithm produces globally optimal clus-
ters, an important aspect that is often considered in practice is the shape
of the clusters produced. Höppner et al. (1999) show that the FCMA tends
to produce intersecting clusters that are spherical in shape. Since the ter-
mination criterion of the FCMA procedure holds true at the global opti-
mum, the clusters produced by our algorithm would also be represented by
intersecting spheres. Nevertheless, for future research, it might be interest-
ing to explore controlling the shapes of the clusters produced as desired,
based on imposing suitable additional restrictions on the membership grade
variables.

Also, note that in practice, cluster analysis problems can involve very
large data sets and, therefore, good heuristic procedures can prove to be
critically important for handling such problem instances. In this context,
it might be useful to investigate hybrid LP-based and meta-heuristic solu-
tion procedures. Our research suggests that designing heuristic methods
based on constructs that are borrowed from strong effective exact proce-
dures might be a prudent approach, and offers rich potential for future
advances in the domain of cluster analysis.
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Späth, H. (1980), Cluster Analysis Algorithms for Data Reduction and Classification of
Objects, Wiley, New York.

Sultan, M., Wigle, D.A., Cumbaa, C.A., Maziarz, M., Glasgow, J., Tsao, M.S. and Jurisica,
I. (2002), Binary tree-structured vector quantization approach to clustering and visualiz-
ing microarray data, Bioinformatics 18(1), 111–119.

Windham, M.P. (1982), Cluster validity for the fuzzy c-means clustering algorithm, IEEE
Transactions on Pattern Analysis and Machine Intelligence 4, 357–363.

Windham, M.P. (1983), Geometric fuzzy clustering algorithms, Fuzzy Sets and Systems 10,
271–279.

Zahid, N., Limouri, M. and Essaid, A. (1999), New cluster-validity for fuzzy clustering, Pat-
tern Recognition 32(7), 1089–1097.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


